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OVERVIEW
Digital twin concept: an appealing opportunity to advance predictive maintenance practices.
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Online:
• Asset-twin system encoded using a
• probabilistic graphical model.
• Sensor data assimilated with DNNs to
• provide structural health diagnostics.
•Digital twin state continually updated
• via sequential Bayesian inference.
• Informed optimal planning of actions.

Offline:
• Generate training data via ROMs.
• Learn a control policy (planning).

REFERENCES
[1]M. Torzoni, M. Tezzele, S. Mariani, A. Manzoni, K. E. Willcox, A digital twin framework for civil engineering structures,

Computer Methods in Applied Mechanics and Engineering 418 (2024) 116584.
[2]L. Rosafalco, M. Torzoni, A. Manzoni, S. Mariani, A. Corigliano, Online structural health monitoring by model order reduction

and deep learning algorithms, Computers & Structures 255 (2021) 106604.
[3]M. G. Kapteyn, J. V. R. Pretorius, K. E. Willcox, A probabilistic graphical model foundation for enabling predictive digital

twins at scale, Nature Computational Science 1 (5) (2021) 337–347.

PROBABILISTIC GRAPHICAL MODEL FOR PREDICTIVE DIGITAL TWINS

Involved variables:
−Physical state: St ∼ p(st)
−Observations: Ot ∼ p(ot)
−Control inputs: Ut ∼ p(ut)
−Digital state: Dt ∼ p(dt)
−QoI: Qt ∼ p(qt)
−Reward: Rt ∼ p(rt)

Assumptions behind the graph topology:
• Physical state only observable indirectly.
•Markovianity of physical and digital states.
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Each factor encodes one of the operations carried out within the graph:
φdata
t = p(Ot = ot|DNN

t ), φ
history
t = p(Dt|Dt−1, U

A
t−1 = uAt−1), φNN

t = p(Dt|DNN
t ),

φQoI
t = p(Qt|Dt), φreward

t = p(Rt|Dt, UAt = uAt ), φcontrol
t = p(Ut|Dt).

Planning of optimal control: from the updated digital
state at the current time tc, unroll the portion of the graph
relative to Dt, Qt, Ut, and Rt until a prediction time.

• Optimization problem: π(Dt) = argmaxπ
∑+∞
t=0 γ

tE[Rt].
• Reward function: Rt(Ut, Dt) = Rcontrol

t (Ut) + αRhealth
t (Dt).
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axles, each one carrying a mass  2 [16, 22] ton. The corresponding load model is described in [37],
and consists of 25 equivalent distributed forces transmitted by the sleepers to the deck through
the ballast layer with a slope 4 : 1, according with Eurocode 1 [60].

CHAPTER 1. INTRODUCTION

Table 1.2: Properties of the Green Train.

Axle distance (m) 2.7
Bogie distance (m) 19.0
Axle load (kg) 18 500

1.3.2 Measurement data

The measurement data used to validate the FEM-models in this project originates
from tests with train passages on the bridge. These tests were performed during
June 2010 with a train type called Gröna Tåget or the Green Train in English
(www.gronataget.se), see table 1.2 and figure 1.5 for properties of the train. The
train set during measurements consisted of two wagons, thus this was the modeled
configuration. The distance between the wagons were assumed to be 5.1 m as shown
in the figure.

The bridge was instrumented with a set of 5 accelerometers, see figure 1.6. Data
was recorded from 13 train passages, wherein train speeds of approximately 180,
230, 235, 250 and 265 km/h are present. The speeds were not measured, but the
passages were conducted according to a scheme which the driver was supposed to
follow. As a consequence, the speeds may be inaccurate and may have a margin of
error of up to 20 km/h.

Figure 1.5: Upper figure: the Green Train as a two wagon set. Bottom figure: the
Green Train as modeled in the analyses of this thesis, where d is the axle
distance, D the boogie distance and P the axle load according to table
1.2.
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Figure 11: Gröna T̊aget train type.

3.3.1 Dataset assembly

Synthetic displacement time histories U are obtained from Nu = 10 sensors deployed as depicted in
Fig. 12. Each recording is provided for a time interval (0, T = 1.5 s) with an acquisition frequency
of fs = 400 Hz, in order to both allow recording train passages at the lowest speed of 160 km/h,
and properly catching the structural response at the maximum speed of 215 km/h. Recordings are
corrupted with an additive Gaussian noise yielding a signal to noise ratio of 120.

In addition to the undamaged condition, the presence of damage in the structure is accounted for
by means of a localized sti↵ness reduction that can take place within Y = 6 predefined subdomains
⌦j , with j = 1, . . . , Y , as depicted in Fig. 12. The sti↵ness reduction can occur with a magnitude
� 2 [30%, 80%], and is held fixed while a train travels across the bridge.

Figure 12: Railway bridge: details of synthetic recordings related to displacements u1(t), . . . , u10(t),
and predefined damaged regions ⌦1, . . . ,⌦6.

The FOM in problem (1) features M = 17, 292 dofs, resulting from a finite element discretiza-
tion with an element size of 0.80 m and a reduced size of 0.15 m for the deck, to enable a smooth
propagation of the traveling load. The presence of the ballast layer is accounted for through an
increased equivalent density for the deck and for the edge beams. The embankments are accounted
for through distributed springs, modeled as a Robin mixed boundary condition (with elastic coef-

ficient krobin = 108 N/m
3
) applied on the surfaces facing the ground. The structural dissipation is

modeled by means of a Rayleigh’s damping matrix, assembled to account for a 5% damping ratio
on the first two structural modes.

The ROM in problem (2) is obtained from a snapshot matrix S, assembled through 400 evalua-
tions of the FOM for di↵erent values of parameters µ = {�, , y, �}>. By setting the error tolerance
to ✏ = 10�3, Mr = 133 POD modes are to be considered in place of the original M = 17, 292 dofs.

The training dataset D is built with I = 10, 000 instances collected using the ROM. Also in this
case, the testing phase of NN CL and of NN RG is carried out considering noisy FOM solutions. The
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Figure 4: L-shaped cantilever beam: details of synthetic recordings related to displacements
u1(t), . . . , u8(t), loading condition, and predefined damage regions ⌦1, . . . ,⌦7.

sampled via Latin hypercube rule. By prescribing a tolerance ✏ = 10�3 on the fraction of energy
content to be disregarded in the approximation, the order of the ROM approximation turns out
to be NRB = 56.

The dataset D is built with I = 10, 000 instances collected using the ROM. This is then
employed to train NNCL and NNRG, as described in the previous section. In the absence of
experimental data, the testing phase of NNCL and of NNRG is carried out through noise-corrupted
FOM solutions. In particular, the asset is monitored by processing batches of Nobs = 10 noisy
observations, relative to the same damage location y and damage magnitude �, yet featuring
varying operational conditions set by Q and f . As the health of the asset evolves over time, the
DT assimilates a batch of noisy observations {Uk}Nobs

k=1 at each time step, to dynamically estimate
the variation in the structural health parameters underlying the digital state.

3.1.2 Digital twin framework

The two structural health parameters within the digital state are d = (y, �)>. In order to accom-
modate the outcome of the DL models within the PGM and to compute the CPT encoding the
�NN

t factor, the range in which the damage level � can take values is discretized in N� = 6 intervals
{[30%, 35%], [35%, 45%], [45%, 55%], [55%, 65%], [65%, 75%], [75%, 80%]}, thus resulting in Nd = 43
possible digital states. The number of � intervals and the width of each interval are chosen arbi-
trarily, and there are no restrictions in this respect. The resulting digital states are then sorted to
follow the lexicographic order.

The confusion matrix reported in Fig. 5 measures the o✏ine performance of NNCL and NNRG

in assimilating noisy FOM data to classify the digital state, among the Nd possible outcomes
of Dt. The (unknown) ground truth digital state is detected by the DL models with an overall
classification accuracy of 93.61%. Moreover, it can be argued from the confusion matrix that most
of the misclassifications are due to the damage scenarios related to a sti↵ness reduction within ⌦6

or within ⌦7. This is a quite expected outcome since measurements closer to the clamped side are
only marginally a↵ected by the presence of damage close to the free end of the beam, thus yielding
a smaller sensitivity of sensor recordings to damage. This confusion matrix then serves as the CPT
encoding the �NN

t factor.
For the present case, we consider four possible control inputs, each provided with a CPT

modeling the transition probability p(Dt+1|Dt, U
A
t = uA

t ) from Dt to Dt+1 after taking the action

uA
t , and collectively encoding the �history

t factor. These internal models of how structural health is
expected to evolve do not reflect the prescribed ground truth evolution, which is unknown to the
DT. The considered control inputs are the following:

• Do nothing (DN) action. There is no maintenance action planned in this case and the physical
state will evolve according to a stochastic deterioration process.
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Figure 14: Railway bridge - Digital twin future predictions with three possible actions: DN (do
nothing), PM (perfect maintenance), and RE (restrict operational conditions). The starting time
is tc = 5. In the top panel the probability p(Dt|Dt�1, Ut�1) relates to the amount of damage in
⌦5. In the bottom panel it corresponds to p(Ut|Dt).

4 Conclusions

In this work we have proposed a predictive digital twin approach to the health monitoring, main-
tenance, and management planning of civil structures, to advance condition-based and predictive
maintenance practices. The presented strategy relies upon a probabilistic graphical model inspired
by [18]. This framework is used to encode the asset-twin coupled dynamical system, the relevant
end-to-end information flow via observational data (physical to digital) and control inputs (digital
to physical), and its evolution over time, all with quantified uncertainty. The assimilation of obser-
vational data is carried out with deep learning models, leveraging the capabilities of convolutional
layers to automatically select and extract damage-sensitive features from raw vibration recordings.
The structural health parameters comprising the digital state are used to capture the variability
of the physical asset. They are continually updated in a sequential Bayesian inference fashion,
according to control-dependent transition dynamics models describing how the structural health is
expected to evolve. The updated digital state is eventually exploited to predict the future evolu-
tion of the physical system and the associated uncertainty. This enables predictive decision-making
about maintenance and management actions.

The computational procedure takes advantage of a preliminary o✏ine phase which involves:
(i) using physics-based numerical models and reduced order modeling, to overcome the lack of
experimental data for civil applications under varying damage and operational conditions while
populating the datasets for training the deep learning models; (ii) learning the health-dependent
control policy to be applied at each time step of the online phase, to map the belief over the digital
state onto actions feeding back to the physical asset.

The proposed strategy has been assessed against the simulated monitoring of an L-shaped
cantilever beam and a railway bridge. In the absence of experimental data, the tests have been
carried out considering high-fidelity simulation data, corrupted with an additive Gaussian noise.
The obtained results have proved the digital twin capabilities of accurately tracking the digital state
evolution under varying operational conditions, with relatively low uncertainty. The framework
is also able to promptly suggest the appropriate control input, within at most two time steps of
when the (unknown) ground truth structural health demands it.

Future research lines will investigate the ability of the digital twin to update the transition
dynamics models by learning from previous data. As suggested by the railway bridge case study,
this will allow for a more accurate prediction of the expected evolution of the digital state, thus
enabling predictive decision-making better tailored to the monitored asset. Another aspect of
interest concerns solving the planning problem induced by the probabilistic model using reinforce-
ment learning algorithms, capable of taking into account a finite planning horizon representing the
design lifetime of the asset.
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sampled via Latin hypercube rule. By prescribing a tolerance ✏ = 10�3 on the fraction of energy
content to be disregarded in the approximation, the order of the ROM approximation turns out
to be NRB = 56.

The dataset D is built with I = 10, 000 instances collected using the ROM. This is then
employed to train NNCL and NNRG, as described in the previous section. In the absence of
experimental data, the testing phase of NNCL and of NNRG is carried out through noise-corrupted
FOM solutions. In particular, the asset is monitored by processing batches of Nobs = 10 noisy
observations, relative to the same damage location y and damage magnitude �, yet featuring
varying operational conditions set by Q and f . As the health of the asset evolves over time, the
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the variation in the structural health parameters underlying the digital state.
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Undamaged case 
+ 6 damageable zones 

Stiffness reduction (30%,80%) 
37 possible states

Available control inputs: do nothing (DN),
perfect maintenance (PM), restrict operations (RE).

PAPER & CODE

SIMULATION-BASED DAMAGE IDENTIFICATION
Physics-based numerical model describing the
structural dynamic response to applied loadings:{

Mẍ(t) +C(µ)ẋ(t) +K(µ)x(t) = f(t,µ), t ∈ (0, T )
x(0) = x0,
ẋ(0) = ẋ0.

• Parameters µ: damage, loads, environment.

• ROM via reduced basis method for parametrized systems
• (POD): x(t,µ) ≈Wx̂(t,µ). Galerkin projection:

Mr ≡W>MW, Cr(µ) ≡W>C(µ)W,

Kr(µ) ≡W>K(µ)W, fr(t,µ) ≡W>f(t,µ).

• Low-dimensional, low-cost, physics-based model:
Mr

¨̂x(t) +Cr(µ) ˙̂x(t) +Kr(µ)x̂(t) = fr(t,µ), t ∈ (0, T )

x̂(0) = W>x0,
˙̂x(0) = W>ẋ0.

• Compare solution trajectories with sensor recordings.

Structural health monitoring (SHM) workflow.

Simulate sensor data in the presence of damage:
• Damage simulated as a local stiffness reduction of variable
•magnitude within a set of predefined subdomains.

Train DNNs to solve the SHM problem:
• Damage detection/localization as a classification task.
• Damage quantification as a regression task.


